Create a form with ConfiForms which sends internal
notification but does not keep/store the data

@ In this tutorial you will learn how to create a form with ConfiForms which will:

® send Confluence notification to a user
* will not keep the data in the form (will delete it right after the notification is sent)

@ If you are new to ConfiForms, please take a few minutes to read the Basic concepts Guide, or go through the video tutorial on that page. ‘<

This is how the final form looks like

Send notification

Name

Message

Complete storage format

https://wiki.vertuna.com/display/CONFIFORMS/Basic+concepts

<ac:structured-macro ac: macro-i d="7090c376- 21f b- 4e40- 9249- f 6f e32aa62f 3" ac: name="confi fornl' ac: schena-versi on="
1">
<ac: paranet er ac: name="f or nNane" >f </ ac: par anet er >
<ac: paraneter ac:nane="saveButtonlLabel ">Send</ ac: par anet er >
<ac: paraneter ac:nane="regi strationForniitle">Send notification</ac: paraneter>
<ac:rich-text-body>
<p>
<ac:structured-nmacro ac: macro-i d="303eccal-bb19-44c9-b188-990db8e3c711" ac: nane="confiformfield-
definition"
ac: schenma-versi on="1">
<ac: paraneter ac:nane="fi el dNane" >nane</ ac: par anet er >
<ac: paraneter ac:nane="fi el dLabel " >Nanme</ ac: par anet er >
<ac: paraneter ac:nanme="type">user</ac: paraneter>
</ ac: structured- nacr o>
</ p>
<ac:structured-macro ac: macro-i d="cOa8clcf-326d-4321-ablf-8ef 743bdc8d6" ac: name="confiformfiel d-definition"
ac: schena-versi on="1">
<ac: paraneter ac:nane="fiel dNane" >nmessage</ ac: par anet er >
<ac: paraneter ac:nanme="fi el dLabel ">Message</ ac: par anet er >
<ac: paraneter ac:nane="type">textarea</ac: par anet er >
</ ac: structured- macr o>
<p>
<ac: structured-macro ac: macro-i d="052bc766-c50c-4396- a666- 8f 2436ef 01bf" ac: name="confiformentry-register
ac: schema-versi on="1">
<ac: paraneter ac:nane="regi strationMessage">Notification has been sent</ac: paraneter>
<ac: paraneter ac:nane="regi strationButtonLabel ">Send notificati on</ac: paraneter>
<ac: paranet er ac: nane="enbedded" >t rue</ac: par anet er >
<ac: paraneter ac:nane="atl assi an- macr o- out put -t ype" >l NLI NE</ ac: par anet er >
<ac:rich-text-body>
<p> </ p>
</ac:rich-text-body>
</ ac: struct ur ed- nacr o>
</ p>
<ac:structured-macro ac: macro-i d="5f 096006- a6f c- 4243- 8e71- 8f 3e09907c2e" ac: name="confiformifttt"
ac: schena-version="1">
<ac: paraneter ac:nanme="action">Send Noti fication</ac: paraneter>
<ac: paraneter ac:nane="event">onCreat ed</ac: par anet er >
<ac: paraneter ac:nanme="title">Hello [entry.nane. ful |l Nane] </ ac: paranet er >
<ac:rich-text-body>
<p>[entry. message] </ p>
</ ac:rich-text-body>
</ ac: structured- macr o>
<ac:structured-macro ac: macro-id="cd72d761- 5c5b- 4f b3- bea5- 9bb9c8496b67" ac: name="confiformifttt"
ac: schena-versi on="1">
<ac: paraneter ac:nane="acti on">Del ete Confi Forns Entry</ac: paraneter>
<ac: paranet er ac: name="event">onCr eat ed</ ac: par anet er >
<ac: paraneter ac:nane="title">id:[entry.id]</ac:paraneter>
<ac: paramet er ac: name="who" >f: 884778</ ac: par anet er >
<ac:rich-text-body>
<p> </ p>
</ ac:rich-text-body>
</ ac: structured- nacr o>
</ ac:rich-text-body>
</ ac: structured- nacr o>

And this is how it looks in the editor

o ConfiForms Form | formName = f | registrationFormTitle = Send notification | saveButtonLabel = Send

«owF ConfiForms Field Definition | fieldName = name | fieldLab...

oo ConfiForms Field Definition | fieldName = message | field...

cosfi” ConfiForms Registration Control | embedded = true | registrationButtonLabel = Send notification | registrationMessage = N...

cosfl” ConfiForms IFTTT Integration Rules | event = onCreated | action = Send Notification | title = Hello [entry.name.fullName]

[entry.message]

cowr ConfiForms IFTTT Integration Rules | event = onCreated | action = Delete ConfiForms Entry | title = id:[entry.id] | who = f:...

Let's see what it consists of:

® As usual, everything is ConfiForms Form container, we have set custom title and custom label for main action button

®* Then we have 2 fields (ConfiForms Field Definition macros): name and message. Name is of type "user" and Message is of type "textarea"

®* Then we have a ConfiForms Registration Control, which tells us how the form should be shown (we have selected it to be embedded to the page)
and we set custom messages and labels

® Then we have 2 ConfiForms IFTTT macros, or handlers as we usually call it. The ordering is important! The first one sends notification and the
second one deletes the original ConfiForms record which was used initially to sent the notification

Below, you can see screenshots for Registration Control and screenshots for these 2 IFTTT handlers

Configuration for ConfiForms Registration Control

Edit ‘ConfiForms Registration Control’ Macro

¥ Preview
Leave blank if the form is defined on the
same page
© Embedded or Dialog mode? * Visible only in PREVIEW
Check this option if you want to have
your forrr! embedded on the page, a Configuration helper for ListViews, TableViews, CardViews,
;i{::lgz{m IF you want your form 28 2 CalendarViews and Registration Control macros
Show
Label for Registration button *
Send notification
Message to show after a record been X i
created Send notification
MNotification has been sent
Name a
Set values as key=value pairs,
separated by & (as request Message

parameters)

Select macro Save | Cancel

Configuration for ConfiForms IFTTT macro which sends notifications

Edit ‘ConfiForms IFTTT Integration Rules’ Macro

event -
¥ Preview

onCreated 5
Actiqn & perform Visible only in PREVIEW

Send Notification H

How to configure ConfiForms IFTTT macro
Fire IFTTT action only when this The following fields are defined in the form f and can be referenced
conditionffilter is met from IFTTT macro body using '${FIELD_NAME} or
'[entry.field_name]' notation.
If empty then IFTTT action is always v " d
executed when an event is occurred. Same - createdBy
syntax as in fillers + ownedBy
« ownedByName

Subject for notification + createdByName

Hello [entry.name.fullName] = Cregied

« dateCreatedFormatted
Could be constructed dynamically. You can « name
reference record owner as [owner]; record . message
madifier, as [modifier]; any record field as
[entry.FIELD_MAME], you can reference
page watchers as [watchers]
Select macro Save @ Cancel

Here we set a subject to be dynamic, and as "user" object is a "complex" object we can query some additional properties (See documentation for more
details on properties of "complex" objects: Documentation)

Second IFTTT deletes the record (we set a dynamic filter, which will filter only one record)

https://wiki.vertuna.com/display/CONFIFORMS/Documentation

Edit ‘ConfiForms IFTTT Integration Rules' Macro

Event* ¥ Preview

onCreated 5
Action to perform * Visible only in PREVIEW

1 -

Delete ConfiForms Entry M How to configure ConfiForms IFTTT macro
Fire IF i v when thi The following fields are defined in the form f and can be referenced

ire IFTTT action only when this from IFTTT macro body using '${FIELD_NAME} or
condition/filter is met , .)

[entry field_name]' notation.
- id
If empty then IFTTT action is always v » createdBy
executed men an event is occurred. Same «+ ownedBy
syntax as in filters - ownedByName
Delete by filter " cregtacEyName
« created

id:[entry.id] « dateCreatedFormatted
Delete ConfiForms entry (or entries) by * name
given filter. Same syntax as in fillers The * message
scope is all records in the form. Could be
constructed dynamically. You can reference

Select macro Save = Cancel

The important bit (shown below, as it did not fit into the previous screenshot) is the last parameter, called "Form name and pageld":

Edit ‘ConfiForms IFTTT Integration Rules’ Macro

¥ Preview

If empty then IFTTT action is always
executed when an event is occurred. Same
syntax as in filters

Visible only in PREVIEW
Delete by filter
How to configure ConfiForms IFTTT macro
The following fields are defined in the form f and can be referenced

Delete ConfiForms entry (or entries) by from IFTTT macro body using 'S{FIELD_NAME} or
given filter. Same syntax as in filters The '[entry.field_name]' notation
scope is all records in the form. Could be -

constructed dynamically. You can reference « id

record owner as [owner]; record modifier, v « createdBy
as [modifier]; any record field as
[entry.FIELD_MAME], you can reference
page watchers as [watchers]

id:[entry.id]

« ownedBy
« ownedByName
« createdByName

Form name and pageld « created
« dateCreatedFormatted
f:884778
= name
separated by ™" (Example: + message
formMame:pageld)
Select macro Save | Cancel

which set's the name of the form this filter (and action) should be applied on, as well as the location (pageld of the page where this form is configured)

In our case the form name is "f" and it is on the page with page Id = 884778

The end result looks like this (notification and actually empty table):

X,Eonfluence Spaces - People Browse -

Name

Message

£ Form: f ~

Name Message

No data stored

CSV | XLS | JSON | XML | RAW | Records: 0 Size: 7 B

This will not work for "Anonymous forms"! The reason is: a record stored does not have an owner and therefore could not be deleted by anyone
than a form administrator

	Create a form with ConfiForms which sends internal notification but does not keep/store the data

